Electromagnetic image recognition of a defect profile on a metal surface with a protective layer based on magnetic disturbance

Author:

Jiang Feng,Hou Rongxi,Tao Li

Abstract

In order to obtain defect information quickly and effectively and improve the accuracy and evaluation ability of traditional electromagnetic non-destructive testing (NDT), an electromagnetic image recognition method for the defect profile based on magnetic field disturbance is proposed in this paper. The excitation coil structure is designed, the excitation mode of the signal source is optimised and a three-dimensional electromagnetic transient analysis model is established for defect profile identification of a metal surface with an anti-corrosion protective layer. The research shows that the disturbed magnetic field Bz has the characteristics of high-resolution imaging and symmetry. The orientation of the defect on the surface has different effects on the clarity of image recognition. The larger the angle between the defect boundary and the induced current, the more complete and clear the image formed by the disturbed magnetic field Bz . A rectangular square wave is the best excitation signal for defect recognition. Its Bz image at t = 0 can present complete shape and position information about the defect. In addition, the excitation coil structure based on the principle of the disturbed magnetic field must provide a uniform induced current to produce a pronounced disturbed magnetic field. It is concluded that electromagnetic imaging technology based on the disturbed magnetic field Bz can better detect and characterise the shape of metal surface defects without damaging the metal protective layer and has good application potential for NDT and safety evaluation of in-service equipment.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3