The interaction of fundamental torsional guided waves from axial and oblique defects in pipes
-
Published:2021-06-01
Issue:6
Volume:63
Page:334-340
-
ISSN:1354-2575
-
Container-title:Insight - Non-Destructive Testing and Condition Monitoring
-
language:en
-
Short-container-title:insight
Author:
Kim Young-Wann,Park Kyung-Jo
Abstract
A quantitative study of the interaction of the T(0,1) torsional mode with axial and oblique defects in a pipe is presented in this paper. A mode decomposition technique employing the chirplet transform is used to separate the multimodal signals reflected from the defects. Reflection
signals are obtained from experiments on a carbon steel pipe. The influence of the crack length and inclination angle on the reflection is investigated. The reflection from an axial defect is found to consist of a series of wave pulses with gradually decaying amplitude. The results show that
the reflection coefficient of an axial crack initially increases with the crack length but finally reaches an oscillating regime. Furthermore, for an oblique crack, it is revealed that the reflection coefficient is linearly dependent on the equivalent circumferential extent of the defect and
is independent of the axial length.
Publisher
British Institute of Non-Destructive Testing (BINDT)
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献