Circumferential Damage Monitoring of Steel Pipe Using a Radar Map Based on Torsional Guided Waves

Author:

Zheng Zhupeng12ORCID,Zhang Zihao1

Affiliation:

1. Department of Civil Engineering, Xiamen University, Xiamen 361005, China

2. Shenzhen Research Institute of Xiamen University, Shenzhen 518087, China

Abstract

Ultrasonic guided wave technology has been successfully applied to detect multiple types of defects in pipes. However, the circumferential location and coverage of a defect are less studied because it is difficult to determine. In this study, the fundamental torsional mode T (0, 1) is selected to conduct monitoring of the circumferential defect in pipelines because of its almost non-dispersive property. A radar map of the peak wave signals at 30 circumferential positions is proposed to detect the damage. The circumferential defect of a steel pipe is thoroughly investigated using numerical simulation. First, the circumferential positioning of defects in various areas of the pipe is studied. Second, the results are compared to those based on longitudinal guide waves. Finally, the circumferential coverage of a defect in the pipeline is determined. The waves are excited and received using the pitch–catch approach, and the collected monitoring signals are processed using the Hilbert transformation. According to the findings, the circumferential defect in the pipe can be effectively identified from a ‘T’ shape in the radar image, and the monitoring method by the torsional guided wave is superior to the longitudinal wave method. The results clearly demonstrate the advantages of torsional guided waves in defect monitoring. The proposed method is expected to provide a promising solution to circumferential damage identification in pipelines.

Funder

Fujian Natural Science Foundation

Guangdong Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3