Preliminary investigation into the feasibility of combining satellite and GPS data to identify pasture growth and grazing

Author:

Woodward Simon J.R.,Neal Mark B.,Cross Peter S.

Abstract

Regular estimation of pasture availability is a time-consuming on-farm task, but one that is vital for good grazing management. The ability to automate this task is, therefore, highly valuable. Combining satellite sensing of pasture mass with global positioning for herd location provides raw data that can potentially be used to automatically estimate pasture mass, pasture growth and pasture grazing events across a farm. The feasibility of automatically obtaining and processing this information was demonstrated on a Waikato dairy farm from 22 October 2018 to 21 February 2019 (123 days), with 13 global positioning collars recording the location of grazing mobs 16 times per hour on average, in a dairy herd of initially 380 animals. Satellite sensing of pasture cover over the same period was only possible on 16 days during this period, with November being particularly cloudy, resulting in fewer pasture cover estimates. A non-linear regression model was constructed with parameters representing initial pasture cover, average pasture growth rate through time, pasture growth differences between paddocks, pasture disappearance rate relative to the density of cow GPS samples, and an ungrazeable residual. A Bayesian approach was used to infer the model parameters from the satellite-measured pasture cover data. This allowed interpolation of pasture mass through the whole period with an RMSE of 225 kgDM/ha, as well as identifying growth rate differences between paddocks, which may provide a useful basis for improved pasture management. Rough estimates of cow average daily pasture disappearance were also made, which peaked at 20 kgDM/d in November, falling to 5 kgDM/d by February. This pilot study demonstrated the feasibility of combining satellite pasture cover data with herd location data from a small number of GPS collars to infer pasture growth rates in individual paddocks through time.

Publisher

New Zealand Grassland Association

Subject

Nature and Landscape Conservation,Plant Science,Soil Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3