Modelling long-term changes in soil phosphorus and carbon under contrasting fertiliser and grazing management in New Zealand hill country

Author:

Bilotto Franco,Vibart Ronaldo,Mackay Alec,Costall Des

Abstract

Soil carbon (C) stocks under permanent New Zealand pastures vary with slope and aspect due to differences in primary production, animal behaviour and nutrient return. An existing nutrient transfer model was extended using a web-based, general-purpose modelling tool to simulate long-term changes in soil phosphorus (P) and C in hill country under contrasting fertiliser and sheep stocking regimes. Three self-contained farmlets were examined: no P applied; 125 kg single superphosphate (SSP)/ha/year; and 375 kg SSP/ha/year, since 1980. The refined spatial model was able to simulate P and C distribution with varying slopes and aspects. For example, the mean annual changes in soil P and C were greater on low slopes and eastern aspects than on the other two slope and aspect positions, consistent with observed changes in these nutrients. However, the model overestimated changes in soil C, which highlighted both gaps in current knowledge and key factors influencing change in soil C stocks. Understanding the spatial patterns of soil C across the landscape will be critical in the design of soil C monitoring regimes, should soil C stocks be considered at a national level as a sink or source of CO2 emissions.

Publisher

New Zealand Grassland Association

Subject

Nature and Landscape Conservation,Plant Science,Soil Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3