Towards an integrated phosphorus, carbon and nitrogen cycling model for topographically diverse grasslands

Author:

Bilotto FrancoORCID,Vibart Ronaldo,Mackay Alec,Costall Des,Harrison Matthew Tom

Abstract

AbstractContemporary science on how livestock influence nutrient cycling in grazing systems is limited, particularly in topographically complex (i.e., slopes and aspects) hill country landscapes. Prominent slope and aspect variation affects primary production, animal behaviour and nutrient return. Here, we embed recent scientific advancements in nutrient dynamics across complex landscapes to (1) set up a soil organic carbon (SOC) saturation function to an existing SOC and total soil phosphorus (TSP) model (Bilotto et al. J N Z Grassl 81:171–178, 2019. https://doi.org/10.33584/jnzg.2019.81.397), (2) include total soil nitrogen (TSN) dynamics, and (3) establish if the model (herein the Grass-NEXT model) can simulate the spatial and temporal changes of TSP, SOC and TSN in hill country. A long-term P fertiliser experiment with contrasting different P fertilisation levels and associated sheep stocking regimes (herein, ‘farmlets’) was used for model testing. The Grass-NEXT model predicted TSP and SOC stocks with strong accuracy and precision (model performance), and TSN with a moderate performance across farmlets [Concordance Correlation Coefficient (CCC), 0.75, 0.72 and 0.49, respectively]. Grass-NEXT model simulated TSP, SOC and TSN distribution with moderate/strong performance across slopes (CCC, 0.94, 0.80 and 0.70) and aspects (CCC, 0.83, 0.67 and 0.51). Consistent with observed data, modelled changes in TSP and TSN were greater on low slopes and eastern aspects, but no clear pattern was observed for SOC stocks. The Grass-NEXT model provides an intuitive research tool for exploring management options for increasing SOC and TSN, as well as an instrument for monitoring and reporting on nutrient dynamics in complex landscapes.

Funder

Ministry for Primary Industries

AgResearch

AgResearch Limited

Publisher

Springer Science and Business Media LLC

Subject

Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3