Abstract
<p style='text-indent:20px;'>We consider a two-species chemotaxis-Navier-Stokes system with <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian in three-dimensional smooth bounded domains. It is proved that for any <inline-formula><tex-math id="M3">\begin{document}$ p\geq2 $\end{document}</tex-math></inline-formula>, the problem admits a global weak solution.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference25 articles.
1. X. Bai, M. Winkler.Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.
2. N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler.Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
3. X. Cao, S. Kurima, M. Mizukami.Global existence and asymptotic behavior of classical solutions for a 3D two-species chemotaxis-Stokes system with competitive kinetics, Math. Meth. Appl. Sci., 41 (2018), 3138-3154.
4. R. Dal Passo, H. Garcke, G. Grün.On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342.
5. K. Fujie, A. Ito, T. Yokota.Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type, Adv. Math. Sci. Appl., 24 (2014), 67-84.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献