Affiliation:
1. College of Mathematic and Information, China West Normal University, Nanchong, 637009, China
2. Sichuan Colleges and Universities Key Laboratory of Optimization Theory and Applications, School of Mathematics and Information, China West Normal University, Nanchong, 637009, China
Abstract
<abstract><p>In this paper, the chemotaxis-Stokes system with slow $ p $-Laplacian diffusion and logistic source as follows</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{aligned} &n_t+u\cdot\nabla n = \nabla\cdot(|\nabla n|^{p-2}\nabla n)-\nabla\cdot(n\nabla c)+\mu n(1-n), &x\in\Omega, t>0, \\ &c_t+u\cdot\nabla c = \Delta c-cn, & x\in\Omega, t>0, \\ &u_t+\nabla P = \Delta u+n\nabla\Phi, & x\in\Omega, t>0, \\ &\nabla\cdot u = 0, &\; x\in\Omega, t>0\; \end{aligned} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>was considered in a bounded domain $ \Omega\subset\mathbb{R}^3 $ with smooth boundary under homogeneous Neumann-Neumann-Dirichlet boundary conditions. Subject to the effect of logistic source, we proved the system exists a global bounded weak solution for any $ p > 2 $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)