Author:
Fu Shishuo,Lin Zhicong,Wang Yaling
Abstract
<p style='text-indent:20px;'>We launch a systematic study of the refined Wilf-equivalences by the statistics <inline-formula><tex-math id="M1">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ {\mathsf{comp}}(\pi) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ {\mathsf{iar}}(\pi) $\end{document}</tex-math></inline-formula> are the number of components and the length of the initial ascending run of a permutation <inline-formula><tex-math id="M5">\begin{document}$ \pi $\end{document}</tex-math></inline-formula>, respectively. As Comtet was the first one to consider the statistic <inline-formula><tex-math id="M6">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula> in his book <i>Analyse combinatoire</i>, any statistic equidistributed with <inline-formula><tex-math id="M7">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula> over a class of permutations is called by us a <i>Comtet statistic</i> over such class. This work is motivated by a triple equidistribution result of Rubey on <inline-formula><tex-math id="M8">\begin{document}$ 321 $\end{document}</tex-math></inline-formula>-avoiding permutations, and a recent result of the first and third authors that <inline-formula><tex-math id="M9">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula> is a Comtet statistic over separable permutations. Some highlights of our results are:</p><p style='text-indent:20px;'>● Bijective proofs of the symmetry of the joint distribution <inline-formula><tex-math id="M10">\begin{document}$ ({\mathsf{comp}}, {\mathsf{iar}}) $\end{document}</tex-math></inline-formula> over several Catalan and Schröder classes, preserving the values of the left-to-right maxima.</p><p style='text-indent:20px;'>● A complete classification of <inline-formula><tex-math id="M11">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula>- and <inline-formula><tex-math id="M12">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula>-Wilf-equivalences for length <inline-formula><tex-math id="M13">\begin{document}$ 3 $\end{document}</tex-math></inline-formula> patterns and pairs of length <inline-formula><tex-math id="M14">\begin{document}$ 3 $\end{document}</tex-math></inline-formula> patterns. Calculations of the <inline-formula><tex-math id="M15">\begin{document}$ ({\mathsf{des}}, {\mathsf{iar}}, {\mathsf{comp}}) $\end{document}</tex-math></inline-formula> generating functions over these pattern avoiding classes and separable permutations.</p><p style='text-indent:20px;'>● A further refinement of Wang's descent-double descent-Wilf equivalence between separable permutations and <inline-formula><tex-math id="M16">\begin{document}$ (2413, 4213) $\end{document}</tex-math></inline-formula>-avoiding permutations by the Comtet statistic <inline-formula><tex-math id="M17">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference31 articles.
1. R. M. Adin, E. Bagno, Y. Roichman.Block decomposition of permutations and Schur-positivity, J. Algebraic Combin., 47 (2018), 603-622.
2. C. A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77 (2018), Article B77i, 64 pp (electronic).
3. M. Barnabei, F. Bonetti and M. Silimbani, The descent statistic on $123$-avoiding permutations, Sém. Lothar. Combin., 63 (2010), B63a, 8 pp.
4. S. C. Billey, G. S. Warrington.Kazhdan-Lusztig polynomials for $321$-Hexagon-avoiding permutations, J. Algebraic Combin., 13 (2001), 111-136.
5. M. Bóna, Combinatorics of Permutations. With a Foreword by Richard Stanley, Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2004.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Combinatorial Bijection on di-sk Trees;The Electronic Journal of Combinatorics;2021-12-17