Refined Wilf-equivalences by Comtet statistics

Author:

Fu Shishuo,Lin Zhicong,Wang Yaling

Abstract

<p style='text-indent:20px;'>We launch a systematic study of the refined Wilf-equivalences by the statistics <inline-formula><tex-math id="M1">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ {\mathsf{comp}}(\pi) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ {\mathsf{iar}}(\pi) $\end{document}</tex-math></inline-formula> are the number of components and the length of the initial ascending run of a permutation <inline-formula><tex-math id="M5">\begin{document}$ \pi $\end{document}</tex-math></inline-formula>, respectively. As Comtet was the first one to consider the statistic <inline-formula><tex-math id="M6">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula> in his book <i>Analyse combinatoire</i>, any statistic equidistributed with <inline-formula><tex-math id="M7">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula> over a class of permutations is called by us a <i>Comtet statistic</i> over such class. This work is motivated by a triple equidistribution result of Rubey on <inline-formula><tex-math id="M8">\begin{document}$ 321 $\end{document}</tex-math></inline-formula>-avoiding permutations, and a recent result of the first and third authors that <inline-formula><tex-math id="M9">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula> is a Comtet statistic over separable permutations. Some highlights of our results are:</p><p style='text-indent:20px;'>● Bijective proofs of the symmetry of the joint distribution <inline-formula><tex-math id="M10">\begin{document}$ ({\mathsf{comp}}, {\mathsf{iar}}) $\end{document}</tex-math></inline-formula> over several Catalan and Schröder classes, preserving the values of the left-to-right maxima.</p><p style='text-indent:20px;'>● A complete classification of <inline-formula><tex-math id="M11">\begin{document}$ {\mathsf{comp}} $\end{document}</tex-math></inline-formula>- and <inline-formula><tex-math id="M12">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula>-Wilf-equivalences for length <inline-formula><tex-math id="M13">\begin{document}$ 3 $\end{document}</tex-math></inline-formula> patterns and pairs of length <inline-formula><tex-math id="M14">\begin{document}$ 3 $\end{document}</tex-math></inline-formula> patterns. Calculations of the <inline-formula><tex-math id="M15">\begin{document}$ ({\mathsf{des}}, {\mathsf{iar}}, {\mathsf{comp}}) $\end{document}</tex-math></inline-formula> generating functions over these pattern avoiding classes and separable permutations.</p><p style='text-indent:20px;'>● A further refinement of Wang's descent-double descent-Wilf equivalence between separable permutations and <inline-formula><tex-math id="M16">\begin{document}$ (2413, 4213) $\end{document}</tex-math></inline-formula>-avoiding permutations by the Comtet statistic <inline-formula><tex-math id="M17">\begin{document}$ {\mathsf{iar}} $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Combinatorial Bijection on di-sk Trees;The Electronic Journal of Combinatorics;2021-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3