Author:
Fu Shishuo,Lin Zhicong,Wang Yaling
Abstract
A di-sk tree is a rooted binary tree whose nodes are labeled by $\oplus$ or $\ominus$, and no node has the same label as its right child. The di-sk trees are in natural bijection with separable permutations. We construct a combinatorial bijection on di-sk trees proving the two quintuples $(\mathrm{LMAX},\mathrm{LMIN},\mathrm{DESB},\mathsf{iar},\mathsf{comp})$ and $(\mathrm{LMAX},\mathrm{LMIN},\mathrm{DESB},\mathsf{comp},\mathsf{iar})$ have the same distribution over separable permutations. Here for a permutation $\pi$, $\mathrm{LMAX}(\pi)/\mathrm{LMIN}(\pi)$ is the set of values of the left-to-right maxima/minima of $\pi$ and $\mathrm{DESB}(\pi)$ is the set of descent bottoms of $\pi$, while $\mathsf{comp}(\pi)$ and $\mathsf{iar}(\pi)$ are respectively the number of components of $\pi$ and the length of initial ascending run of $\pi$.
Interestingly, our bijection specializes to a bijection on $312$-avoiding permutations, which provides (up to the classical Knuth–Richards bijection) an alternative approach to a result of Rubey (2016) that asserts the two triples $(\mathrm{LMAX},\mathsf{iar},\mathsf{comp})$ and $(\mathrm{LMAX},\mathsf{comp},\mathsf{iar})$ are equidistributed on $321$-avoiding permutations. Rubey's result is a symmetric extension of an equidistribution due to Adin–Bagno–Roichman, which implies the class of $321$-avoiding permutations with a prescribed number of components is Schur positive.
Some equidistribution results for various statistics concerning tree traversal are presented in the end.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献