Author:
Del Santo Daniele, ,Fanelli Francesco,Sbaiz Gabriele,Wróblewska-Kamińska Aneta, ,
Abstract
<abstract><p>In the present paper, we study a multiscale limit for the barotropic Navier-Stokes system with Coriolis and gravitational forces, for vanishing values of the Mach, Rossby and Froude numbers ($ {\rm{Ma}} $, $ {\rm{Ro}} $ and $ {\rm{Fr}} $, respectively). The focus here is on the effects of gravity: albeit remaining in a low stratification regime $ {\rm{Ma}}/{\rm{Fr}}\, \rightarrow\, 0 $, we consider scaling for the Froude number which go beyond the "critical" value $ {\rm{Fr\, = \, \sqrt{\rm{Ma}}}} $. The rigorous derivation of suitable limiting systems for the various choices of the scaling is shown by means of a compensated compactness argument. Exploiting the precise structure of the gravitational force is the key to get the convergence.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Reference30 articles.
1. H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Heidelberg: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-16830-7
2. E. Bocchi, F. Fanelli, C. Prange, Anisotropy and stratification effects in the dynamics of fast rotating compressible fluids, arXiv: 2011.02411.
3. D. Bresch, M. Gisclon, C.-K. Lin, An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit, ESAIM: M2AN, 39 (2005), 477–486. http://dx.doi.org/10.1051/m2an:2005026
4. J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical geophysics: An introduction to rotating fluids and the Navier-Stokes equations, Oxford: Oxford University Press, 2006.
5. D. Cobb, F. Fanelli, On the fast rotation asymptotics of a non-homogeneous incompressible MHD system, Nonlinearity, 34 (2021), 2483–2526. http://dx.doi.org/10.1088/1361-6544/abb929
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献