Stability of Navier–Stokes Equations
Author:
Abstract
In this chapter we intend to investigate the stability of the Leray solutions constructed in the previous chapter. It is useful to start by analyzing the linearized version of the Navier–Stokes equations, so the first section of the chapter is devoted to the proof of the well-posedness of the time-dependent Stokes system. The study will be applied in Section 3.2 to the two-dimensional Navier–Stokes equations, and the more delicate case of three space dimensions will be dealt with in Sections 3.3–3.5.
Publisher
Oxford University Press
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations;Journal of Dynamics and Differential Equations;2023-12-08
2. Large Deviation Principle for the Two-dimensional Stochastic Navier-Stokes Equations with Anisotropic Viscosity;Acta Mathematicae Applicatae Sinica, English Series;2023-06-17
3. Sharper dispersive estimates and asymptotics for a Boussinesq-type system with larger ill-prepared initial data;Asymptotic Analysis;2023-02-02
4. Global solutions to the dissipative quasi-geostrophic equation with dispersive forcing;Journal of the Mathematical Society of Japan;2023-01-25
5. Global Well-Posedness of the Dissipative Quasi-Geostrophic Equation with Dispersive Forcing;Axioms;2022-12-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3