Affiliation:
1. Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algeria
2. Ecole superieure de management, Tlemcen. Tlemcen 13000, Algeria
3. Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
Abstract
<abstract><p>In this work we address the question of existence and non existence of positive solutions to a class of fractional problems with non local gradient term. More precisely, we consider the problem</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{array}{rcll} (-\Delta )^s u & = &\lambda \dfrac{u}{|x|^{2s}}+ (\mathfrak{F}(u)(x))^p+ \rho f & \text{ in } \Omega,\\ u&>&0 & \text{ in }\Omega,\\ u& = &0 & \text{ in }(\mathbb{R}^N\setminus\Omega), \end{array}\right. $\end{document} </tex-math></disp-formula></p> <p>where $ \Omega\subset \mathbb{R}^N $ is a $ C^{1, 1} $ bounded domain, $ N > 2s, \rho > 0 $, $ 0 < s < 1 $, $ 1 < p < \infty $ and $ 0 < \lambda < \Lambda_{N, s} $, the Hardy constant defined below. We assume that $ f $ is a non-negative function with additional hypotheses. Here $ \mathfrak{F}(u) $ is a nonlocal "gradient" term. In particular, if $ \mathfrak{F}(u)(x) = |(-\Delta)^{\frac s2}u(x)| $, then we are able to show the existence of a critical exponents $ p_{+}(\lambda, s) $ such that: 1) if $ p > p_{+}(\lambda, s) $, there is no positive solution, 2) if $ p < p_{+}(\lambda, s) $, there exists, at least, a positive supersolution solution for suitable data and $ \rho $ small. Moreover, under additional restriction on $ p $, there exists a solution for general datum $ f $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis