Affiliation:
1. Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algeria
Abstract
Abstract
The aim of this paper is to study the following problem:
\left\{\begin{aligned} \displaystyle(-\Delta)^{s}_{p,\beta}u&\displaystyle=f(x%
,u)&&\displaystyle\phantom{}\text{in }\Omega,\\
\displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{%
N}\setminus\Omega,\end{aligned}\right.
where Ω is a smooth bounded domain of
{\mathbb{R}^{N}}
containing the origin,
(-\Delta)^{s}_{p,\beta}u(x):=\mathrm{PV}\int_{\mathbb{R}^{N}}\frac{\lvert u(x)%
-u(y)\rvert^{p-2}(u(x)-u(y))}{\lvert x-y\rvert^{N+ps}}\frac{dy}{\lvert x\rvert%
^{\beta}\lvert y\rvert^{\beta}}
with
{0\leq\beta<\frac{N-ps}{2}}
,
{1<p<N}
,
{s\in(0,1)}
, and
{ps<N}
.
The main purpose of this work is to prove the existence of a weak solution under some hypotheses on f. In particular, we will consider two cases:
(i)
{f(x,\sigma)=f(x)}
; in this case we prove the existence of a weak solution, that is, in a suitable weighted fractional Sobolev space for all
{f\in L^{1}(\Omega)}
. In addition, if
{f\gneq 0}
, we show that the problem above has a unique entropy positive solution.
(ii)
{f(x,\sigma)=\lambda\sigma^{q}+g(x)}
,
{\sigma\geq 0}
; in this case, according to the values of λ and q, we get the largest class of data g for which the problem above has a positive solution.
Funder
Ministerio de Economía y Competitividad
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献