Author:
Zha Xicuo,Huang Shuibo,Tian Qiaoyu
Abstract
<abstract><p>In this paper, by the Stampacchia method, we consider the boundedness of positive solutions to the following mixed local and nonlocal quasilinear elliptic operator</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \left\{\begin{array}{rl} -\Delta_{p}u+(-\Delta)_{p}^su = f(x)u^{\gamma},&x\in\Omega,\\ u = 0,\; \; \; \; \; \; \; \; &x\in \mathbb{R}^{N}\setminus\Omega, \end{array} \right. \end{align*} $\end{document} </tex-math></disp-formula></p>
<p>where $ s\in(0, 1) $, $ 1 < p < N $, $ f\in L^{m}(\Omega) $ with $ m > \frac{Np}{p(s+p-1)-\gamma(N-sp)} $, $ 0\leqslant\gamma < p_s^*-1 $, $ p_s^{*} = \frac{Np}{N-sp} $ is the critical Sobolev exponent.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. B. Abdellaoui, A. Attar, R. Bentifour, On the fractional $p$-Laplacian equations with weight and general datum, Adv. Nonlinear Anal., 8 (2016), 144–174. https://doi.org/10.1515/anona-2016-0072
2. R. Arora, V. D. Rǎdulescu, Combined effects in mixed local-nonlocal stationary problems, arXiv, 2021. https://doi.org/10.48550/arXiv.2111.06701
3. S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Partial Differ. Equations, 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908
4. S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math., 2023. https://doi.org/10.1007/s11854-023-0272-5
5. S. Biagi, D. Mugnai, E. Vecchi, A Brezis-Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math., 2022. https://doi.org/10.1142/S0219199722500572
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献