Author:
Aguglia Angela,Cossidente Antonio,Marino Giuseppe,Pavese Francesco,Siciliano Alessandro
Abstract
<p style='text-indent:20px;'>In this paper we construct different families of orbit codes in the vector spaces of the symmetric bilinear forms, quadratic forms and Hermitian forms on an <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula>-dimensional vector space over the finite field <inline-formula><tex-math id="M2">\begin{document}$ {\mathbb F_{q}} $\end{document}</tex-math></inline-formula>. All these codes admit the general linear group <inline-formula><tex-math id="M3">\begin{document}$ {{{{\rm{GL}}}}}(n,q) $\end{document}</tex-math></inline-formula> as a transitive automorphism group.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference50 articles.
1. R. Ahlswede, N. Cai, S.-Y. Li, R. W. Yeung.Network information flow, IEEE Trans. Inform. Theory, 46 (2000), 1204-1216.
2. M. Aschbacher., Finite Group Theory, ${ref.volume} (1986).
3. E. Ben-Sasson, T. Etzion, A. Gabizon, N. Raviv.Subspace polynomials and cyclic subspace codes, IEEE Trans. Inform. Theory, 62 (2016), 1157-1165.
4. O. Bottema.On the Betti-Mathieu group, Nieuw Arch. Wisk., 16 (1930), 46-50.
5. M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wassermann, Existence of $q$–analogs of Steiner systems, Forum Math. Pi, 4 (2016), e7, 14 pp.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploration on Digital Reconstruction of Spatial Field under Mobile Internet Technology;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06