Author:
BRAUN MICHAEL,ETZION TUVI,ÖSTERGÅRD PATRIC R. J.,VARDY ALEXANDER,WASSERMANN ALFRED
Abstract
Let $\mathbb{F}_{q}^{n}$ be a vector space of dimension $n$ over the finite field $\mathbb{F}_{q}$. A $q$-analog of a Steiner system (also known as a $q$-Steiner system), denoted ${\mathcal{S}}_{q}(t,\!k,\!n)$, is a set ${\mathcal{S}}$ of $k$-dimensional subspaces of $\mathbb{F}_{q}^{n}$ such that each $t$-dimensional subspace of $\mathbb{F}_{q}^{n}$ is contained in exactly one element of ${\mathcal{S}}$. Presently, $q$-Steiner systems are known only for $t\,=\,1\!$, and in the trivial cases $t\,=\,k$ and $k\,=\,n$. In this paper, the first nontrivial $q$-Steiner systems with $t\,\geqslant \,2$ are constructed. Specifically, several nonisomorphic $q$-Steiner systems ${\mathcal{S}}_{2}(2,3,13)$ are found by requiring that their automorphism groups contain the normalizer of a Singer subgroup of $\text{GL}(13,2)$. This approach leads to an instance of the exact cover problem, which turns out to have many solutions.
Publisher
Cambridge University Press (CUP)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献