Error analysis of kernel regularized pairwise learning with a strongly convex loss

Author:

Wang Shuhua1,Sheng Baohuai2

Affiliation:

1. School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

2. Department of Economic Statistics, School of International Business, Zhejiang Yuexiu University, Shaoxing 312000, China

Abstract

<p style='text-indent:20px;'>This paper presents a detailed performance analysis for the kernel-based regularized pairwise learning model associated with a strongly convex loss. The robustness for the model is analyzed by applying an improved convex analysis method. The results show that the regularized pairwise learning model has better qualitatively robustness according to the probability measure. Some new comparison inequalities are provided, with which the convergence rates are derived. In particular an explicit learning rate is obtained in case that the loss is the least square loss.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Artificial Intelligence,Computational Mathematics,Computational Theory and Mathematics,Theoretical Computer Science

Reference62 articles.

1. S. Agarwal, P. Niyogi.Generalization bounds for ranking algorithms via algorithmic stability, J. Mach. Learn. Res., 10 (2009), 441-474.

2. H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011.

3. M. Boissier, S. Lyu, Y. Ying and D.-X. Zhou, Fast convergence of online pairwise learning algorithms, Proceedings of the 19th International Conference on Artifical Intelligence and Statistics, 2016,204-212.

4. C. Brunner, A. Fischer, A. Luig, T. Thies.Pairwise support vector machines and their application to large scale problems, J. Mach. Learn. Res., 13 (2012), 2279-2292.

5. Q. Cao, Z.-C. Guo, Y. Ying.Generalization bounds for metric and similarity learning, Mach. Learn., 102 (2016), 115-132.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3