Learning Rate of Regularized Regression Associated with Zonal Translation Networks

Author:

Ran Xuexue1,Sheng Baohuai2ORCID,Wang Shuhua3

Affiliation:

1. School of Mathematical Physics and Information, Shaoxing University, Shaoxing 312000, China

2. Department of Economic Statistics, School of International Business, Zhejiang Yuexiu University, Shaoxing 312000, China

3. School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

Abstract

We give a systematic investigation on the reproducing property of the zonal translation network and apply this property to kernel regularized regression. We propose the concept of the Marcinkiewicz–Zygmund setting (MZS) for the scattered nodes collected from the unit sphere. We show that under the MZ condition, the corresponding convolutional zonal translation network is a reproducing kernel Hilbert space. Based on these facts, we propose a kind of kernel regularized regression learning framework and provide the upper bound estimate for the learning rate. We also give proof for the density of the zonal translation network with spherical Fourier-Laplace series.

Funder

National Natural Science Foundation of China

NSFC/RGC Joint Research Scheme

Natural Science Foundation of Jiangxi Province of China

Publisher

MDPI AG

Reference81 articles.

1. ImageNet classification with deep convolutional neural networks;Krizhevsky;Commun. ACM,2017

2. Wu, Y., Schuster, M., Chen, Z., Le, Q.-V., Norouzi, M., Macherey, W., Cao, Y., and Gao, Q. (2016). Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv.

3. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning;Alipanahi;Nat. Biotechnol.,2015

4. Chui, C.K., Lin, S.-B., and Zhou, D.-X. (2018). Construction of neural networks for realization of localized deep learning. arXiv.

5. Deep neural networks for rotation-invariance approximation and learning;Chui;Anal. Appl.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3