Author:
Coroianu Lucian,Gal Sorin G.
Abstract
<p style='text-indent:20px;'>In this paper we put in evidence localization results for the so-called Bernstein max-min operators and a property of translation for the Bernstein max-product operators.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Artificial Intelligence,Computational Mathematics,Computational Theory and Mathematics,Theoretical Computer Science
Reference21 articles.
1. A. G. Anastassiou, L. Coroianu, S. G. Gal.Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind, J. Comp. Anal. Appl., 12 (2010), 396-406.
2. B. Bede, L. Coroianu, S. G. Gal.Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. Math. Sci., 2009 (2009), 590589.
3. B. Bede, L. Coroianu, S. G. Gal.Approximation and shape preserving properties of the nonlinear Meyer-König and Zeller operator of max-product kind, Numer. Funct. Anal. Optim., 31 (2010), 232-253.
4. B. Bede, L. Coroianu and S. G. Gal, Approximation by Max-Product Type Operators, Springer, [Cham], 2016.
5. B. Bede, H. Nobuhara, J. Fodor, K. Hirota.Max-product Shepard approximation operators,, J. Adv. Comput. Intell. Inform., 10 (2006), 494-497.