Affiliation:
1. Department of Mathematics, The University of Texas-Pan American, 1201 West University, Edinburg, TX 78539, USA
2. Department of Mathematics and Computer Science, The University of Oradea, Official Postal nr. 1, C.P. nr. 114, Universitatii 1, 410087 Oradea, Romania
Abstract
Starting from the study of theShepard nonlinear operator of max-prod typeby Bede et al. (2006, 2008), in the book by Gal (2008), Open Problem 5.5.4, pages 324–326, theBernstein max-prod-type operatoris introduced and the question of the approximation order by this operator is raised. In recent paper, Bede and Gal by using a very complicated method to this open question an answer is given by obtaining an upper estimate of the approximation error of the form (with an unexplicit absolute constant ) and the question of improving the order of approximation is raised. The first aim of this note is to obtain this order of approximation but by a simpler method, which in addition presents, at least, two advantages: it produces an explicit constant in front of and it can easily be extended to other max-prod operators of Bernstein type. However, for subclasses of functions including, for example, that of concave functions, we find the order of approximation , which for many functions is essentially better than the order of approximation obtained by the linear Bernstein operators. Finally, some shape-preserving properties are obtained.
Subject
Mathematics (miscellaneous)
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献