Effect of titanium addition on sub-structural characteristics of low carbon copper bearing steel in hot rolling

Author:

Makhatha ME

Abstract

<abstract> <p>The low carbon copper-bearing steel exhibits high toughness and better weldability. In the present investigation, 0.05C–1.52Cu–1.45Mn stainless steel and its titanium added counterpart which is 0.05C–0.05Ti–1.52Cu–1.45Mn stainless steel were subjected to hot rolling. The hot rolling test followed by quenching to retain the microstructure was done using a hot-rolling mill. The rolling was done at two different temperatures of 800 ℃ and 850 ℃. The characterization of microstructure was done using electron back scattered diffraction and transmission electron microscopy analysis. The 0.05C–1.52Cu–1.45Mn stainless steel when subjected to hot rolling at a lower temperature envisaged a deformed microstructure rather transformed one. However, the same steel at a higher temperature envisages a transformed microstructure. There was no variation in hardness was observed. However, the addition of 0.05 wt% of titanium in 0.05C–1.52Cu–1.45Mn stainless steel influenced the softening and the microstructure showed some recrystallization; the hardness was decreased with the increasing rolling temperature because the solubility of titanium in the austenite phase increased with temperature which leads to suppression austenitic grain/sub-grain growth and hardness. The mean sub-grain size for 0.05C–1.52Cu–1.45Mn stainless steel was 2.75 µm. However, the addition of titanium leads to a decrease in the mean sub-grain size. A marginally larger mean sub-grain size was observed when 0.05C–0.05Ti–1.52Cu–1.45Mn stainless steel was rolled at a higher temperature. A comparatively finer precipitate of copper, titanium and oxy-silicates of Ferrous/Manganese in order of nanometer was formed during rolling at a higher temperature.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3