Evolutionary optimization framework to train multilayer perceptrons for engineering applications

Author:

AL-HAJJ Rami1,M. Fouad Mohamad2,Zeki Mustafa1

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Kuwait

2. Department of Computer Engineering and Systems, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

Abstract

<abstract> <p>Training neural networks by using conventional supervised backpropagation algorithms is a challenging task. This is due to significant limitations, such as the risk for local minimum stagnation in the loss landscape of neural networks. That may prevent the network from finding the global minimum of its loss function and therefore slow its convergence speed. Another challenge is the vanishing and exploding gradients that may happen when the gradients of the loss function of the model become either infinitesimally small or unmanageably large during the training. That also hinders the convergence of the neural models. On the other hand, the traditional gradient-based algorithms necessitate the pre-selection of learning parameters such as the learning rates, activation function, batch size, stopping criteria, and others. Recent research has shown the potential of evolutionary optimization algorithms to address most of those challenges in optimizing the overall performance of neural networks. In this research, we introduce and validate an evolutionary optimization framework to train multilayer perceptrons, which are simple feedforward neural networks. The suggested framework uses the recently proposed evolutionary cooperative optimization algorithm, namely, the dynamic group-based cooperative optimizer. The ability of this optimizer to solve a wide range of real optimization problems motivated our research group to benchmark its performance in training multilayer perceptron models. We validated the proposed optimization framework on a set of five datasets for engineering applications, and we compared its performance against the conventional backpropagation algorithm and other commonly used evolutionary optimization algorithms. The simulations showed the competitive performance of the proposed framework for most examined datasets in terms of overall performance and convergence. For three benchmarking datasets, the proposed framework provided increases of 2.7%, 4.83%, and 5.13% over the performance of the second best-performing optimizers, respectively.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3