Days-ahead water level forecasting using artificial neural networks for watersheds

Author:

Velasco Lemuel Clark12,Bongat John Frail2,Castillon Ched2,Laurente Jezreil2,Tabanao Emily2

Affiliation:

1. Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, The Philippines

2. College of Computer Studies, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, The Philippines

Abstract

<abstract> <p>Watersheds of tropical countries having only dry and wet seasons exhibit contrasting water level behaviour compared to countries having four seasons. With the changing climate, the ability to forecast the water level in watersheds enables decision-makers to come up with sound resource management interventions. This study presents a strategy for days-ahead water level forecasting models using an Artificial Neural Network (ANN) for watersheds by conducting data preparation of water level data captured from a Water Level Monitoring Station (WLMS) and two Automatic Rain Gauge (ARG) sensors divided into the two major seasons in the Philippines being implemented into multiple ANN models with different combinations of training algorithms, activation functions, and a number of hidden neurons. The implemented ANN model for the rainy season which is RPROP-Leaky ReLU produced a MAPE and RMSE of 6.731 and 0.00918, respectively, while the implemented ANN model for the dry season which is SCG-Leaky ReLU produced a MAPE and RMSE of 7.871 and 0.01045, respectively. By conducting appropriate water level data correction, data transformation, and ANN model implementation, the results of error computation and assessment shows the promising performance of ANN in days-ahead water level forecasting of watersheds among tropical countries.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3