Affiliation:
1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Harbin University of Science and Technology, Harbin 150080, China
2. Department of Mechanical and Aerospace Engineering, Air University, E-9, Islamabad, Pakistan
Abstract
<abstract>
<p>A flexible needle has emerged as a crucial clinical technique in contemporary medical practices, particularly for minimally invasive interventions. Its applicability spans diverse surgical domains such as brachytherapy, cardiovascular surgery, neurosurgery and others. Notably, flexible needles find utility in biopsies requiring deep skin penetration to access infected areas. Despite its minimally invasive advantages, the precise guidance of the needle to its intended target, while avoiding damage to bones, blood vessels, organs and tissues, remains a significant challenge for researchers. Consequently, extensive research has been dedicated to enhancing the steering and accuracy of flexible needles. Here, we aim to elucidate the recent advancements, trends and perspectives in flexible needle steering models and path planning over the last 15 years. The discussed models encompass various types, including symmetric-tip needles, curved-tip needles, tendon-actuated needles, programmable needles and the innovative fracture-directed waterjet needles. Moreover, the paper offers a comprehensive analysis, comparing the trajectories followed by these needle models to attain the desired target with minimal tissue damage. By delving into these aspects, the paper contributes to a deeper understanding of the current landscape of flexible needle technology and guides future research directions in this dynamic field.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference64 articles.
1. R. Alterovitz, M. Branicky, K. Goldberg, Motion planning under uncertainty for image-guided medical needle steering, Int. J. Rob Res., 27 (2008), 1361–1374. https://doi.org/10.1177/0278364908097661
2. Y. J. Zhao, Y. D. Zhang, F. Tu, Reverse path planning for flexible needle in 2D soft tissue with obstacles, Appl. Mech. Mater., 121-126 (2012), 4132–4137. https://doi.org/10.4028/www.scientific.net/AMM.121-126.4132
3. C. Rossa, N. Usmani, R. Sloboda, A hand-held assistant for semiautomated percutaneous needle steering, IEEE Trans. Biomed Eng., 64 (2017), 637–648. https://doi.org/10.1109/TBME.2016.2565690
4. C. Rossa, M Tavakoli, Issues in closed-loop needle steering, Control Eng. Pract., 62 (2017), 55–69. https://doi.org/10.1016/j.conengprac.2017.03.004
5. W. Park, J. S. Kim, Y. Zhou, Diffusion-based motion planning for a nonholonomic flexible needle model, in Proceedings of the IEEE Int. Conf. Robot Automation, (2005), 1050–4729. https://doi.org/10.1109/ROBOT.2005.1570829
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献