Research on workflow recognition for liver rupture repair surgery

Author:

Men Yutao12,Zhao Zixian132,Chen Wei12,Wu Hang3,Zhang Guang3,Luo Feng3,Yu Ming3

Affiliation:

1. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China

2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China

3. Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China

Abstract

<abstract> <p>Liver rupture repair surgery serves as one tool to treat liver rupture, especially beneficial for cases of mild liver rupture hemorrhage. Liver rupture can catalyze critical conditions such as hemorrhage and shock. Surgical workflow recognition in liver rupture repair surgery videos presents a significant task aimed at reducing surgical mistakes and enhancing the quality of surgeries conducted by surgeons. A liver rupture repair simulation surgical dataset is proposed in this paper which consists of 45 videos collaboratively completed by nine surgeons. Furthermore, an end-to-end SA-RLNet, a self attention-based recurrent convolutional neural network, is introduced in this paper. The self-attention mechanism is used to automatically identify the importance of input features in various instances and associate the relationships between input features. The accuracy of the surgical phase classification of the SA-RLNet approach is 90.6%. The present study demonstrates that the SA-RLNet approach shows strong generalization capabilities on the dataset. SA-RLNet has proved to be advantageous in capturing subtle variations between surgical phases. The application of surgical workflow recognition has promising feasibility in liver rupture repair surgery.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3