Author:
Shi Minjia,Qian Liqin,Helleseth Tor,Solé Patrick
Abstract
<p style='text-indent:20px;'>In this paper, for each of six families of three-valued <inline-formula><tex-math id="M1">\begin{document}$ m $\end{document}</tex-math></inline-formula>-sequence correlation, we construct an infinite family of five-weight codes from trace codes over the ring <inline-formula><tex-math id="M2">\begin{document}$ R = \mathbb{F}_2+u\mathbb{F}_2 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ u^2 = 0. $\end{document}</tex-math></inline-formula> The trace codes have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Their support structure is determined. An application to secret sharing schemes is given. The parameters of the binary image are <inline-formula><tex-math id="M4">\begin{document}$ [2^{m+1}(2^m-1),4m,2^{m}(2^m-2^r)] $\end{document}</tex-math></inline-formula> for some explicit <inline-formula><tex-math id="M5">\begin{document}$ r. $\end{document}</tex-math></inline-formula></p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献