Author:
Ouyang Yi,Wang Sen,Xie Xianhong, ,
Abstract
Given a partition of <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z}_N^* $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M1.png"/></alternatives></inline-formula> into four subsets, we present a generic construction of uncorrelated quaternary sequence pairs of length <inline-formula><tex-math id="M2">\begin{document}$ 2N $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M2.png"/></alternatives></inline-formula> using the interleaved technique based on this partition. By choosing partitions arising from cyclotomic classes of order 4 and 8 over <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}_p $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M5.png"/></alternatives></inline-formula>, we construct uncorrelated quaternary sequence pairs of length <inline-formula><tex-math id="M6">\begin{document}$ 2p $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JUST-2021-0234_M6.png"/></alternatives></inline-formula>, which are almost balanced and have low autocorrelation, except at a few positions.
Publisher
Journal of University of Science and Technology of China
Reference15 articles.
1. Fan P, Darnell M. Sequence Design for Communications Applications. London: Research Studies Press, 1996.
2. Golomb S, Gong G. Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge, UK: Cambridge University Press, 2005.
3. Cusick T, Ding C, Renvall A. Stream Ciphers and Number Theory. Amsterdam: North-Holland Publishing, 1998.
4. Luo G, Cao X, Shi M, et al. Three new constructions of asymptotically optimal periodic quasi-complementary sequence sets with small alphabet sizes. IEEE Trans. Inf. Theory, 2021, 67 (8): 5168–5177.
5. Shi M, Qian L, Helleseth T, et al. Five-weight codes from three-valued correlation of M-sequences. Adv. Math. Commun., 2021: doi 10.3934/amc.2021022.