Rectangular, range, and restricted AONTs: Three generalizations of all-or-nothing transforms

Author:

Esfahani Navid Nasr,Stinson Douglas R.

Abstract

<p style='text-indent:20px;'>All-or-nothing transforms (AONTs) were originally defined by Rivest [<xref ref-type="bibr" rid="b14">14</xref>] as bijections from <inline-formula><tex-math id="M1">\begin{document}$ s $\end{document}</tex-math></inline-formula> input blocks to <inline-formula><tex-math id="M2">\begin{document}$ s $\end{document}</tex-math></inline-formula> output blocks such that no information can be obtained about any input block in the absence of any output block. Numerous generalizations and extensions of all-or-nothing transforms have been discussed in recent years, many of which are motivated by diverse applications in cryptography, information security, secure distributed storage, etc. In particular, <inline-formula><tex-math id="M3">\begin{document}$ t $\end{document}</tex-math></inline-formula>-AONTs, in which no information can be obtained about any <inline-formula><tex-math id="M4">\begin{document}$ t $\end{document}</tex-math></inline-formula> input blocks in the absence of any <inline-formula><tex-math id="M5">\begin{document}$ t $\end{document}</tex-math></inline-formula> output blocks, have received considerable study.</p><p style='text-indent:20px;'>In this paper, we study three generalizations of AONTs that are motivated by applications due to Pham et al. [<xref ref-type="bibr" rid="b13">13</xref>] and Oliveira et al. [<xref ref-type="bibr" rid="b12">12</xref>]. We term these generalizations rectangular, range, and restricted AONTs. Briefly, in a rectangular AONT, the number of outputs is greater than the number of inputs. A range AONT satisfies the <inline-formula><tex-math id="M6">\begin{document}$ t $\end{document}</tex-math></inline-formula>-AONT property for a range of consecutive values of <inline-formula><tex-math id="M7">\begin{document}$ t $\end{document}</tex-math></inline-formula>. Finally, in a restricted AONT, the unknown outputs are assumed to occur within a specified set of "secure" output blocks. We study existence and non-existence and provide examples and constructions for these generalizations. We also demonstrate interesting connections with combinatorial structures such as orthogonal arrays, split orthogonal arrays, MDS codes and difference matrices.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3