Author:
D'Arco Paolo,Esfahani Navid Nasr,Stinson Douglas R.
Abstract
We continue a study of unconditionally secure all-or-nothing transforms (AONT) begun by Stinson (2001). An AONT is a bijective mapping that constructs $s$ outputs from $s$ inputs. We consider the security of $t$ inputs, when $s-t$ outputs are known. Previous work concerned the case $t=1$; here we consider the problem for general $t$, focussing on the case $t=2$. We investigate constructions of binary matrices for which the desired properties hold with the maximum probability. Upper bounds on these probabilities are obtained via a quadratic programming approach, while lower bounds can be obtained from combinatorial constructions based on symmetric BIBDs and cyclotomy. We also report some results on exhaustive searches and random constructions for small values of $s$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献