Advanced technologies for chitin recovery from crustacean waste

Author:

Verardi Alessandra,Sangiorgio Paola,Moliterni Stefania,Errico Simona,Spagnoletta Anna,Dimatteo Salvatore

Abstract

<abstract> <p>Chitin is the second most plentiful natural biomass after cellulose, with a yearly production of about 1 × 10<sup>10</sup>–1 × 10<sup>12</sup> tonnes. It can be obtained mainly from sea crustaceans' shells, containing 15–40% chitin. Full or partial deacetylation of chitin generates chitosan. Chitin and chitosan are used in several industrial sectors, as they exhibit high biocompatibility, biodegradability and several biological functions (e.g., antioxidant, antimicrobial and antitumoral activities). These biopolymers' market trends are destined to grow in the coming years, confirming their relevance. As a result, low-cost and industrial-scale production is the main challenge. Scientific literature reports two major technologies for chitin and chitosan recovery from crustacean waste: chemical and biological methods. The chemical treatment can be performed using conventional solvents, typically strong acid and alkaline solutions, or alternative green solvents, such as deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs). Biological methods use enzymatic or fermentation processes. For each route, this paper reviews the advantages and drawbacks in terms of environmental and economic sustainability. The conventional chemical method is still the most used but results in high environmental impacts. Green chemical methods by DESs and NADESs use low-toxic and biodegradable solvents but require high temperatures and long reaction times. Biological methods are eco-friendly but have limitations in the upscaling process, and are affected by high costs and long reaction times. This review focuses on the methodologies available to isolate chitin from crustaceans, providing a comprehensive overview. At the same time, it examines the chemical, biological and functional properties of chitin and its derivative, along with their most common applications. Consequently, this work represents a valuable knowledge tool for selecting and developing the most suitable and effective technologies to produce chitin and its derivatives.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3