Calculation of the value of the critical line using multiple zeta functions

Author:

Tanackov Ilija1,Stević Željko2

Affiliation:

1. Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad, Serbia

2. Faculty of Transport and Traffic Engineering Doboj, University of East Sarajevo, Vojvode Mišića 52, Doboj 74000, Bosnia and Herzegovina

Abstract

<abstract> <p>Newton's identities of an infinite polynomial with complex-conjugate roots <italic>n</italic><sup><italic>−(</italic>σ+<italic>it</italic>)</sup> and <italic>n</italic><sup><italic>−(</italic>σ<italic>−it</italic>)</sup> are multiple zeta functions for <italic>n</italic>∈[1, ∞), σ∈R and <italic>t</italic>∈R. All Newton's identities can be represented by Macdonald determinants. In a special case of the Riemann hypothesis, the multiple zeta function of the first order is equal to zero, ζ(σ+<italic>it</italic>)+ζ(σ−<italic>it</italic>) = 0. The special case includes all non-trivial zeros. The value of the last, infinite multiple zeta function, in the special case, changes the structure of the determinant that can be calculated. The result is the reciprocal of the factorial value (<italic>n</italic>!)<sup>−1</sup>. The general value of the infinite multiple zeta function is calculated based on Vieta's rules and is equal to (<italic>n</italic>!)<sup>−2σ</sup>. The identity based on the relation of the special case and the general case (<italic>n</italic>!)<sup>−1</sup> = (<italic>n</italic>!)<sup>−2σ</sup> is reduced to the equation −1 = −2σ. The value of the critical line for all non-trivial zeros is singular, σ = ½.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3