Author:
Pan Zhenjiang,Wu Zhengang
Abstract
<abstract><p>In this paper, we derive the asymptotic formulas $ B^*_{r, s, t}(n) $ such that</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathop{\lim} \limits_{n \rightarrow \infty} \left\{ \left( \sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} \right)^{-1} - B^*_{r,s,t}(n) \right\} = 0, $\end{document} </tex-math></disp-formula></p>
<p>where $ Re(r+s) > 1 $ and $ t \in \mathbb{C} $. It is evident that the asymptotic formulas for the inverses of the tails of both the Riemann zeta function and the Hurwitz zeta function on the half-plane $ Re(s) > 1 $ are its corollaries. Subsequently we provide the asymptotic formulas for the Riemann zeta function and the Hurwitz zeta function on the half-plane $ Re(s) < 0 $. Finally, we study the asymptotic formulas of the inverse of the tails of the Dirichlet L-function for $ Re(s) > 1 $ and $ Re(s) < 0 $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference15 articles.
1. L. Xin, Some identities related to Riemann zeta-function, J. Inequal. Appl., 2016 (2016), 32. https://doi.org/10.1186/s13660-016-0980-9
2. D. Kim, K. Song, The inverses of tails of the Riemann zeta function, J. Inequal. Appl., 2018 (2018), 157. https://doi.org/10.1186/s13660-018-1743-6
3. H. Lee, J. Park, Asymptotic behavior of the inverse of tails of Hurwitz zeta function, J. Korean Math. Soc., 57 (2020), 1535–1549. https://doi.org/10.4134/JKMS.j190789
4. H. Ohtsuka, S Nakamura, On the sum of reciprocal Fibonacci number, Fibonacci Quart., 46/47 (2008), 153–159.
5. W. Hwang, K. Song, A reciprocal sum related to the Riemann zeta function at $s$ = 6, arXiv, 2017. https://doi.org/10.48550/arXiv.1709.07994