Bifurcation and chaos in simple discontinuous systems separated by a hypersurface

Author:

Hosham Hany A.1,Alharthi Thoraya N.2

Affiliation:

1. Department of Mathematics, Faculty of Science, Taibah University, Yanbu, 41911, Saudi Arabia

2. Department of Mathematics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia

Abstract

<abstract><p>This research focuses on a mathematical examination of a path to sliding period doubling and chaotic behaviour for a novel limited discontinuous systems of dimension three separated by a nonlinear hypersurface. The switching system is composed of dissipative subsystems, one of which is a linear systems, and the other is not linked with equilibria. The non-linear sliding surface is designed to improve transient response for these subsystems. A Poincaré return map is created that accounts for the existence of the hypersurface, completely describing each individual sliding period-doubling orbits that route to the sliding chaotic attractor. Through a rigorous analysis, we show that the presence of a nonlinear sliding surface and a set of such hidden trajectories leads to novel bifurcation scenarios. The proposed system exhibits period-$ m $ orbits as well as chaos, including partially hidden and sliding trajectories. The results are numerically verified through path-following techniques for discontinuous dynamical systems.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3