Bifurcations of hidden orbits in discontinuous maps

Author:

Avrutin ViktorORCID,Jeffrey Mike RORCID

Abstract

Abstract One-dimensional maps with discontinuities are known to exhibit bifurcations somewhat different to those of continuous maps. Freed from the constraints of continuity, and hence from the balance of stability that is maintained through fold, flip, and other standard bifurcations, the attractors of discontinuous maps can appear as if from nowhere, and change period or stability almost arbitrarily. But in fact this is misleading, and if one includes states inside the discontinuity in the map, highly unstable ‘hidden orbits’ are created that have iterates on the discontinuity. These populate the bifurcation diagrams of discontinuous maps with just the necessary unstable branches to make them resemble those of continuous maps, namely fold, flip, and other familiar bifurcations. Here we analyse such bifurcations in detail, focussing first on folds and flips, then on bifurcations characterised by creating infinities of orbits, chaotic repellers, and infinite accumulations of sub-bifurcations. We show the role that hidden orbits play, and how they capture the topological structures of continuous maps with steep branches. This suggests both that a more universal dynamical systems theory marrying continuous and discontinuous systems is possible, and shows how discontinuities can be used to approximate steep jumps in continuous systems without losing any of their topological structure.

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference30 articles.

1. Structural stability of Lorenz attractors;Guckenheimer;Publ. Math. Inst. Hautes Etudes Sci.,1979

2. The structure of Lorenz attractors;Williams;Publ. Math. Inst. Hautes Etudes Sci.,1979

3. On Cherry flows;Martens;Ergod. Theor. Dyn. Syst.,1990

4. Cherry flow: physical measures and perturbation theory;Yang;Ergod. Theor. Dyn. Syst.,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3