Abstract
<abstract><p>For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $\end{document} </tex-math></disp-formula></p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference10 articles.
1. T. M. Apostol, Introduction to analytic number theory, New York: Springer, 1976.
2. A. Brauer, Lösung der Aufgabe 30, Jahresber. Dtsch. Math.-Ver., 35 (1926), 92–94.
3. S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506.
4. S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708.
5. K. Ireland, M. Rosen, A classical introduction to modern number theory, 2 Eds., Graduate Texts in Mathematics, New York: Springer-Verlag, 1990.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献