A note on some diagonal cubic equations over finite fields

Author:

Ge Wenxu1,Li Weiping23,Wang Tianze3

Affiliation:

1. School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. School of Mathematics and Information Sciences, Henan University of Economics and Law, Zhengzhou 450046, China

3. Institute of Mathematics, Henan Academy of Sciences, Zhengzhou 450046, China

Abstract

<p>Let a prime $ p\equiv 1(\text{mod}3) $ and $ z $ be non-cubic in $ \mathbb{F}_p $. Gauss proved that the number of solutions of equation</p><p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ x_1^3+x_2^3+zx_3^3 = 0 $\end{document} </tex-math></disp-formula></p><p>in $ \mathbb{F}_p $ was $ p^2+\frac{1}{2}(p-1)(9d-c) $, where $ c $ was uniquely determined and $ d $, except for the sign, was defined by</p><p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ 4p = c^2+27d^2,\ \ c\equiv 1(\text{mod}3). $\end{document} </tex-math></disp-formula></p><p>In 1978, Chowla, Cowles, and Cowles determined the sign of $ d $ for the case of 2 being non-cubic in $ \mathbb{F}_p $. In this paper, we extended the result of Chowla, Cowles and Cowles to finite field $ \mathbb{F}_q $ with $ q = p^k $, $ p\equiv 1(\text{mod}3) $, and determined the sign of $ d $ for the case of 3 being non-cubic.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3