Author:
Wang Peng, ,He Weijia,Guo Fan,He Xuefang,Huang Jiajun
Abstract
<abstract><p>The atom search optimization (ASO) algorithm has the characteristics of fewer parameters and better performance than the traditional intelligent optimization algorithms, but it is found that ASO may easily fall into local optimum and its accuracy is not higher. Therefore, based on the idea of speed update in particle swarm optimization (PSO), an improved atomic search optimization (IASO) algorithm is proposed in this paper. Compared with traditional ASO, IASO has a faster convergence speed and higher precision for 23 benchmark functions. IASO algorithm has been successfully applied to maximum likelihood (ML) estimator for the direction of arrival (DOA), under the conditions of the different number of signal sources, different signal-to-noise ratio (SNR) and different population size, the simulation results show that ML estimator with IASO algorithum has faster convergence speed, fewer iterations and lower root mean square error (RMSE) than ML estimator with ASO, sine cosine algorithm (SCA), genetic algorithm (GA) and particle swarm optimization (PSO). Therefore, the proposed algorithm holds great potential for not only guaranteeing the estimation accuracy but also greatly reducing the computational complexity of multidimensional nonlinear optimization of ML estimator.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献