BU-DLNet: Breast Ultrasonography-Based Cancer Detection Using Deep-Learning Network Selection and Feature Optimization

Author:

Zafar Amad1ORCID,Tanveer Jawad2,Ali Muhammad Umair1ORCID,Lee Seung Won3ORCID

Affiliation:

1. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea

3. Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Early detection of breast lesions and distinguishing between malignant and benign lesions are critical for breast cancer (BC) prognosis. Breast ultrasonography (BU) is an important radiological imaging modality for the diagnosis of BC. This study proposes a BU image-based framework for the diagnosis of BC in women. Various pre-trained networks are used to extract the deep features of the BU images. Ten wrapper-based optimization algorithms, including the marine predator algorithm, generalized normal distribution optimization, slime mold algorithm, equilibrium optimizer (EO), manta-ray foraging optimization, atom search optimization, Harris hawks optimization, Henry gas solubility optimization, path finder algorithm, and poor and rich optimization, were employed to compute the optimal subset of deep features using a support vector machine classifier. Furthermore, a network selection algorithm was employed to determine the best pre-trained network. An online BU dataset was used to test the proposed framework. After comprehensive testing and analysis, it was found that the EO algorithm produced the highest classification rate for each pre-trained model. It produced the highest classification accuracy of 96.79%, and it was trained using only a deep feature vector with a size of 562 in the ResNet-50 model. Similarly, the Inception-ResNet-v2 had the second highest classification accuracy of 96.15% using the EO algorithm. Moreover, the results of the proposed framework are compared with those in the literature.

Funder

Korean government

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3