A smoothing spline algorithm to interpolate and predict the eigenvalues of matrices extracted from the sequence of preconditioned banded symmetric Toeplitz matrices

Author:

Kouser Salima1,Ur Rehman Shafiq1,Alsaiari Mabkhoot23,Ahmad Fayyaz4,Jalalah Mohammed35,Harraz Farid A.23,Akram Muhammad6

Affiliation:

1. Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan

2. Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia

3. Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran 11001, Saudi Arabia

4. Department of Applied Sciences, National Textile University, Faisalabad, Pakistan

5. Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia

6. Department of Engineering, University of Sannio, 82100, Benevento, Italy

Abstract

<abstract><p>Understanding the eigenvalue distribution of sequence Toeplitz matrices has advanced significantly in recent years. Notable contributors include Bogoya, Grudsky, Böttcher, and Maximenko, who have derived precise asymptotic expansions for these eigenvalues under certain conditions related to the generating function as the matrix size increases. Building on this foundation, the Stefano Serra-Capizzano conjectured that, under certain assumptions about $ \Omega $ and $ \Phi $, a similar expansion may hold for the eigenvalues of a sequence of preconditioned Toeplitz matrices $ T_{n}^{-1}(\Phi) T_n(\Omega) $, given a monotonic ratio $ r = \Omega/\Phi $. In contrast to current eigenvalue solvers, this work presents a novel method for efficiently calculating the eigenvalues of a sequence of large preconditioned banded symmetric Toeplitz matrices (PBST). Our algorithm uses a higher-order spline fitting extrapolation technique to gather spectral data from a smaller sequence of PBST matrices in order to forecast the spectrum of bigger matrices.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3