Author:
LaMao CaiDan, ,Huang Shuibo,Tian Qiaoyu,Huang Canyun, ,
Abstract
<abstract><p>In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{matrix}
- \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), & x\in \Omega , \\
u(x)\ge 0,~~~~~ & x\in \Omega , \\
u(x)=0,~~~~~ & x\in {{\mathbb{R}}^{N}}\setminus \Omega , \\
\end{matrix} \right. $\end{document} </tex-math></disp-formula></p>
<p>where $ 0 < s < 1 $, $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain, $ (-\Delta)^s $ is the fractional Laplace operator, $ f $ is a measurable function.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. B. Abdellaoui, M. Medina, I. Peral, A. Primo, The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differ. Equations, 260 (2016), 8160–8206. http://dx.doi.org/10.1016/j.jde.2016.02.016
2. D. Applebaum, Lévy processes and stochastic calculus, Cambridge: Cambridge University Press, 2009.
3. B. Barrios, I. Peral, S. Vita, Some remarks about the summability of nonlocal nonlinear problems, Adv. Nonlinear Anal., 4 (2015), 91–107. http://dx.doi.org/10.1515/anona-2015-0012
4. S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Part. Diff. Eq., (2021), in press. http://dx.doi.org/10.1080/03605302.2021.1998908
5. S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, arXiv: 2104.00830.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献