Abstract
AbstractIn this paper, we consider the nonlocal elliptic problem involving a mixed local and nonlocal operator, $$\begin{aligned} (P)\left\{ \begin{array}{rcll} \left( \displaystyle \int \limits _\Omega f(x,u)dx\right) ^{\beta }\mathfrak {L_{p,s}}(u)&{}= &{} f^\alpha (x,u) &{} \text { in }\Omega , \\ u &{}> &{} 0 &{} \text {in }\Omega , \\ u &{} = &{} 0 &{} \text {in }{\mathbb {R}}^N \setminus \Omega , \end{array} \right. \end{aligned}$$
(
P
)
∫
Ω
f
(
x
,
u
)
d
x
β
L
p
,
s
(
u
)
=
f
α
(
x
,
u
)
in
Ω
,
u
>
0
in
Ω
,
u
=
0
in
R
N
\
Ω
,
where $$\Omega \subset {\mathbb {R}}^N$$
Ω
⊂
R
N
is a bounded regular domain, $$\mathfrak {L_{p,s}}\equiv -\Delta _p+(-\Delta )^s_p$$
L
p
,
s
≡
-
Δ
p
+
(
-
Δ
)
p
s
, $$0<s<1<p<N$$
0
<
s
<
1
<
p
<
N
, $$\alpha ,\,\beta \in {\mathbb {R}}$$
α
,
β
∈
R
and $$f: \Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}$$
f
:
Ω
×
R
→
R
be a nonnegative function which is defined almost everywhere with respect to the variable x. Using Schauder and Tychonoff fixed point theorems, we get two existence theorems of weak positive solutions under some hypothesis on $$\alpha , \beta $$
α
,
β
and f.
Publisher
Springer Science and Business Media LLC