A new anisotropic fourth-order diffusion equation model based on image features for image denoising

Author:

Wen Ying1,Sun Jiebao1,Guo Zhichang1

Affiliation:

1. School of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

Abstract

<p style='text-indent:20px;'>Image denoising has always been a challenging task. For performing this task, one of the most effective methods is based on variational PDE. Inspired by the LLT model, we first propose a new adaptive LLT model by adding a weighted function, and then we propose a class of fourth-order diffusion equations based on the new functional. Owing to the adaptive function, the new functional is better than the LLT model and other fourth-order models in terms of edge preservation. While generalizing the Euler-Lagrange equation of the new functional, we discuss a new fourth-order diffusion framework for image denoising. Different from those of other fourth-order diffusion models, the new diffusion coefficients depend on the first-order and second-order derivatives, which can preserve edges and smooth images, respectively. Regarding numerical implementations, we first design an explicit scheme for the proposed model. However, fourth-order diffusion equations require strict stability conditions, and the number of iterations needed is considerable. Consequently, we apply the fast explicit diffusion algorithm (FED) to the explicit scheme to reduce the time consumption of the proposed approach. Furthermore, the additive operator splitting (AOS) scheme is applied for the numerical implementation, and it is the most efficient among all of our algorithms. Finally, compared with other models, the new model exhibits superior effectiveness and efficiency.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3