Blind image deconvolution via an adaptive weighted TV regularization

Author:

Xu Chenguang1,Zhang Chao1,Ma Mingxi2,Zhang Jun21

Affiliation:

1. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang Institute of Technology, Nanchang, Jiangxi, China

2. College of Science, Nanchang Institute of Technology, Nanchang, Jiangxi, China

Abstract

 Blind image deconvolution has attracted growing attention in image processing and computer vision. The total variation (TV) regularization can effectively preserve image edges. However, due to lack of self-adaptability, it does not perform very well on restoring images with complex structures. In this paper, we propose a new blind image deconvolution model using an adaptive weighted TV regularization. This model can better handle local features of image. Numerically, we design an effective alternating direction method of multipliers (ADMM) to solve this non-smooth model. Experimental results illustrate the superiority of the proposed method compared with other related blind deconvolution methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference35 articles.

1. Hybrid non-convex second-order total variation with applications to non-blind image deblurring;Adam;Signal, Image and Video Processing,2020

2. Modeling realistic degradations in non-blind deconvolution;Anger;IEEE International Conference on Image Processing (ICIP),2018

3. Graph-based blind image deblurring from a single photograph;Bai;IEEE Transactions on Image Processing,2018

4. Total variation blind deconvolution;Chan;IEEE Transactions on Image Processing,1998

5. Blind deconvolution using bilateral total variation regularization: A theoretical study and application;El Mourabit;Applicable Analysis,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3