Time-harmonic diffuse optical tomography: Hölder stability of the derivatives of the optical properties of a medium at the boundary

Author:

Curran Jason1,Gaburro Romina12,Nolan Clifford12,Somersalo Erkki3

Affiliation:

1. Department of Mathematics and Statistics, CONFIRM-Science Foundation Ireland, University of Limerick, Ireland

2. Department of Mathematics and Statistics, Health Research Institute (HRI), University of Limerick, Ireland

3. Department of Mathematics, Applied Mathematics and Statistics, Case Western University, Cleveland, OH, USA

Abstract

<p style='text-indent:20px;'>We address the inverse problem in Optical Tomography of stably determining the optical properties of an anisotropic medium <inline-formula><tex-math id="M3">\begin{document}$ \Omega\subset\mathbb{R}^n $\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id="M4">\begin{document}$ n\geq 3 $\end{document}</tex-math></inline-formula>, under the so-called <i>diffusion approximation</i>. Assuming that the <i>scattering coefficient</i> <inline-formula><tex-math id="M5">\begin{document}$ \mu_s $\end{document}</tex-math></inline-formula> is known, we prove H&#246;lder stability of the derivatives of any order of the <i>absorption coefficient</i> <inline-formula><tex-math id="M6">\begin{document}$ \mu_a $\end{document}</tex-math></inline-formula> at the boundary <inline-formula><tex-math id="M7">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula> in terms of the measurements, in the time-harmonic case, where the anisotropic medium <inline-formula><tex-math id="M8">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is interrogated with an input field that is modulated with a fixed harmonic frequency <inline-formula><tex-math id="M9">\begin{document}$ \omega = \frac{k}{c} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M10">\begin{document}$ c $\end{document}</tex-math></inline-formula> is the speed of light and <inline-formula><tex-math id="M11">\begin{document}$ k $\end{document}</tex-math></inline-formula> is the wave number. The stability estimates are established under suitable conditions that include a range of variability for <inline-formula><tex-math id="M12">\begin{document}$ k $\end{document}</tex-math></inline-formula> and they rely on the construction of singular solutions of the underlying forward elliptic system, which extend results obtained in J. Differential Equations 84 (2): 252-272 for the single elliptic equation and those obtained in Applicable Analysis DOI:<a href="http://dx.doi.org/10.1080/00036811.2020.1758314" target="_blank">10.1080/00036811.2020.1758314</a>, where a Lipschitz type stability estimate of <inline-formula><tex-math id="M13">\begin{document}$ \mu_a $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M14">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula> was established in terms of the measurements.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3