Abstract
In this paper, we study the performance of Full Waveform Inversion (FWI) from time-harmonic Cauchy data via conditional well-posedness driven iterative regularization. The Cauchy data can be obtained with dual sensors measuring the pressure and the normal velocity. We define a novel misfit functional which, adapted to the Cauchy data, allows the independent location of experimental and computational sources. The conditional well-posedness is obtained for a hierarchy of subspaces in which the inverse problem with partial data is Lipschitz stable. Here, these subspaces yield piecewise linear representations of the wave speed on given domain partitions. Domain partitions can be adaptively obtained through segmentation of the gradient. The domain partitions can be taken as a coarsening of an unstructured tetrahedral mesh associated with a finite element discretization of the Helmholtz equation. We illustrate the effectiveness of the iterative regularization through computational experiments with data in dimension three. In comparison with earlier work, the Cauchy data do not suffer from eigenfrequencies in the configurations.
Funder
Università degli Studi di Trieste
Simons Foundation MATH+X program
NSF
Science Foundation Ireland Investigator
GNAMPA
Inria--TOTAL strategic action DIP
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献