On multiple scattering in Compton scattering tomography and its impact on fan-beam CT

Author:

Kuger Lorenz1,Rigaud Gaël2

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Mathematics, Germany

2. University of Stuttgart, Department of Mathematics, Germany

Abstract

<p style='text-indent:20px;'>The recent development of energy-resolving scintillation crystals opens the way to new types of applications and imaging systems. In the context of computerized tomography (CT), it enables to use the energy as a dimension of information supplementing the source and detector positions. It is then crucial to relate the energy measurements to the properties of Compton scattering, the dominant interaction between photons and matter. An appropriate model of the spectral data leads to the concept of Compton scattering tomography (CST). Multiple-order scattering constitutes the major difficulty of CST. It is, in general, impossible to know how many times a photon was scattered before being measured. In the literature, this nature of the spectral data has often been eluded by considering only the first-order scattering in models of the spectral data. This consideration, however, does not represent the reality as second- and higher-order scattering are a substantial part of the spectral measurement. In this work, we propose to tackle this difficulty by an analysis of the spectral data in terms of modeling and mapping properties. Due to the complexity of the multiple order scattering, we model and study the second-order scattering and extend the results to the higher orders by conjecture. The study ends up with a general reconstruction strategy based on the variations of the spectral data which is illustrated by simulations on a joint CST-CT fan beam scanner. We further show how the method can be extended to high energetic polychromatic radiation sources.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3