Affiliation:
1. Department of Mathematics, Hanoi National University of Education, No. 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
2. Department of Mathematics, Hoa Lu University, Ninh Nhat, Ninh Binh, Vietnam
Abstract
<p style='text-indent:20px;'>In this paper, we are interested in the existence of solutions to the anomalous diffusion equations with delay subjected to nonlocal initial condition:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \label{01} \begin{cases} \partial _t(k*(u-u_0)) +(- \Delta)^\sigma u = f(t,u,u_\rho) \; {\rm {in }}\ \mathbb R^+\times \Omega,\\ u\bigr |_{\partial \Omega} = 0\; {\rm {in }}\ \mathbb R^+\times \partial \Omega,\\ u(s)+g(u)(s) = \phi(s) \;{\rm {in }}\ \Omega, s\in [-h,0]. \end{cases} \notag \tag{1} \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded domain of <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>, the constant <inline-formula><tex-math id="M3">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula> is in <inline-formula><tex-math id="M4">\begin{document}$ (0,1] $\end{document}</tex-math></inline-formula>. Under appropriate assumptions on <inline-formula><tex-math id="M5">\begin{document}$ k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ f,g $\end{document}</tex-math></inline-formula>, we obtain the existence of global solutions and decay mild solutions for (1). The tools used include theory of completely positive functions, resolvent operators, the technique of measures of noncompactness and some fixed point arguments in suitable function spaces. Two application examples with respect to the specific cases of the term <inline-formula><tex-math id="M7">\begin{document}$ k $\end{document}</tex-math></inline-formula> in (1) are presented.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference32 articles.
1. R. Akhmerov, M. Kamenskii, A. Potapov, A. Rodkina and B. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhäuser, Boston-Basel-Berlin, 1992.
2. N. T. V. Anh, Source identification problems for abstract semilinear nonlocal differential equations, Inver. Prob. Imag., early access, 2022.
3. N. T. V. Anh, T. D. Ke.Asymptotic behavior of solutions to a class of differential variational inequalities, Ann. Polonici Math., 114 (2015), 147-164.
4. N. T. Anh, T. D. Ke.Decay integral solutions for neutral fractional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 1601-1622.
5. N. T. V. Anh and T. V. Thuy, On the delay differential variational inequalities of parabolic–elliptic type, Complex Var. Elliptic Equ., early access, 2021.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献