Author:
Fujiwara Hiroshi,Sadiq Kamran,Tamasan Alexandru
Abstract
<p style='text-indent:20px;'>In two dimensions, we consider the problem of inversion of the attenuated <inline-formula><tex-math id="M2">\begin{document}$ X $\end{document}</tex-math></inline-formula>-ray transform of a compactly supported function from data restricted to lines leaning on a given arc. We provide a method to reconstruct the function on the convex hull of this arc. The attenuation is assumed known. The method of proof uses the Hilbert transform associated with <inline-formula><tex-math id="M3">\begin{document}$ A $\end{document}</tex-math></inline-formula>-analytic functions in the sense of Bukhgeim.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Analysis,Control and Optimization,Discrete Mathematics and Combinatorics,Modelling and Simulation,Analysis
Reference34 articles.
1. E. V. Arbuzov and A. L. Bukhgeim, Carleman's formulas for $A$-analytic functions in a half-plane, J. Inv. Ill-Posed Problems, 5, (1997), 491–505.
2. E. V. Arzubov, A. L. Bukhgeim, S. G. Kazantsev.Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.
3. G. Bal.On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.
4. J. Boman.On stable inversion of the attenuated Radon transform with half data, Integral Geometry and Tomography, Contemp. Math., 405 (2006), 19-26.
5. J. Boman, On stable region-of-interest reconstruction in tomography: Examples of non-existence of bounded inverse, Inverse Problems, 32 (2016), 125005.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献