Abstract
AbstractWe prove that if P(D) is some constant coefficient partial differential operator and f is a scalar field such that P(D)f vanishes in a given open set, then the integrals of f over all lines intersecting that open set determine the scalar field uniquely everywhere. This is done by proving a unique continuation property of fractional Laplacians which implies uniqueness for the partial data problem. We also apply our results to partial data problems of vector fields.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Analysis